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The universal amplitude ratio Rt for the (q [ 4)-state Potts model in two
dimensions is determined by using results for the dilute A model in regime 1.
The nature of the relationship between the Potts model and the dilute A model
is discussed.
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1. INTRODUCTION

There has recently been interest in determining universal amplitude ratios,
familiar in statistical mechanics, (1) using the techniques and results of per-
turbed conformal field theory. Since an integrable perturbation corre-
sponds to the scaling limit of a two-dimensional lattice model in statistical
mechanics, these amplitudes have found direct application to the Ising
model, (2) the Potts model (3) and the tricritical Ising model, (4) for example.
When the corresponding lattice model is solvable, or its universality class
contains a solvable counterpart, one would hope to find some of the
same amplitudes using the techniques and results of the solvable model
literature. Indeed, among the integrable field theory results of ref. 2 are
recovered the ‘‘thermal’’ amplitudes of the Ising model, known since the
seventies. (5) In previous papers (6, 7) universal amplitude ratios for the
subleading magnetic and leading thermal perturbations of the tricritical
Ising model were calculated, by considering their realization as members of



the dilute AL model hierarchy: the A3 model in regime 1 and the A4 model
in regime 2, respectively. The amplitude ratios obtainable were confirmed
to be identical to those found in refs. 4 and 8.
In this paper one universal amplitude ratio for the Potts model, among

those given in ref. 3, is determined from the dilute A model in regime 1 by
utilizing a relationship weaker than shared universality class. Preliminary
results for percolation (q=1) have been announced, (9) and this present
paper completes the study. Points of contact between the dilute A model
and the q [ 4 Potts model are outlined in Section 2, and expressions for
the required thermodynamic quantities for the dilute A model are given.
In Section 3 these connections and results are exploited to determine an
expression for the amplitude ratio R+t of the Potts model for each integer
value 1 [ q [ 4. For the Ising (q=2) case, it is also demonstrated that this
quantity can be determined from the Andrews–Baxter–Forrester (10) model.
The relationship of these results to quantum field theory results for the
Potts model (3) is discussed in Section 4.

2. THE MODELS

The dilute AL model (11) is an L state, interaction-round-a-face model
which has been solved (12) in four regimes, two of which provide off-critical
extensions of the unitary minimal conformal field theories. The model’s
adjacency diagram is that of AL with the modification that a state may be
adjacent to itelf on the lattice also. In regime 1 the model is well-defined for
integer L \ 2. Among others, one specification of regime 1 is the crossing
parameter

l=
pL

4(L+1)
. (1)

The central charge of the dilute AL model in this regime (or technically, at
the critical limit of the regime) is

c=1−
6

(L+1)(L+2)
, (2)

and the modular invariant partition function is (AL, AL+1) (13, 14) in the
classification scheme of ref. 15. In the scaling limit the model realizes the
perturbation f2, 1 of the minimal unitary series M(L+1, L+2). (12) The
elliptic nome p which appears in the face weights of the model corresponds
to the coupling constant of the perturbation. For L even the nome is
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thermal, and one should distinguish between regime 1+ (p > 0) and regime
1− (p < 0).
The q-state Potts model for q [ 4, on the basis of its critical exponents

determined by numerical and renormalization group studies, (16, 17) has also
been identified with the minimal unitary series, by way of (18)

`q=2 sin
p(t−1)
2(t+1)

(3)

when the central charge is written as

c=1−
6

t(t+1)
. (4)

The perturbation to which this model corresponds in the scaling limit is
again f2, 1. For both models this identification is made from the conformal
weight in the leading term of the free energy (see (7) below).
That they are both identified with the same perturbation f2, 1 suggests

a relationship between certain members of the dilute A hierarchy and the
Potts models as given in Table I, or from inspection of (2) and (4) by
naively setting t=L+1. This is not to say that they are the same models,
or even that they are in the same universality class. In general the Potts
models and the dilute A models have different internal symmetries, (19) dif-
ferent numbers of ground states, and their order parameters may be asso-
ciated with a different subset of the possible scaling fields of M(t, t+1).
This is the analogue of an idea discussed for three realizations of the f1, 3
perturbation by Delfino. (20) Just as there may be more than one S-matrix in
the field theory context associated with a particular perturbation, here in
the context of statistical mechanics there are two lattice models with only
some features in common. For instance, the adjacency diagram of the
3-state Potts model has the symmetry of the D4 Dynkin diagram, and

Table I. Potts Models and Dilute AL Models Which Share a Common Central Charge

and Critical Exponent a

Central charge Potts model Dilute A model a

cQ 1 q=4 LQ. 2/3
c=4/5 q=3 L=4 1/3
c=1/2 q=2 L=2 0
cQ 0 qQ 1 LQ 1 −2/3
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the appropriate modular invariant partition function is (A4, D4). (14, 19) The
number of ground states of the dilute AL model grows with L, but the
4-state Potts model (which we associate with LQ.) has four ground
states. We should not, then, expect universal quantities for the Potts model
which involve one-point functions or susceptibilities to be obtainable via
the dilute A model.
However, the universal amplitude ratio associated with the specific

heat and the correlation length is (1)

Rt=A1/dt0 (5)

where d is the dimension, t0 is the leading term amplitude of the correla-
tion length

t 4 t0y
−n,

and A comes from the definition of the amplitude of the specific heat

C 4
A
a
y−a.

Expressing A in terms of the leading term coefficient Af of the singular
part of the free energy,

−fs 4Afy
2−a,

it is possible to re-write (5) as:

Rt=[a(1−a)(2−a)Af]1/d t0. (6)

The universality of Rt, i.e., its independence of metric factors associated
with the reduced temperature y3 T−Tc, follows from the scaling relation
2−a=dn. Of course, in what follows for the lattice models we have d=2.
In the language of perturbed conformal field theory, the free energy

and the correlation length are related directly to the coupling constant g of
the perturbation and the associated conformal weight D:

fs ’ gd/(d−2D) t ’ g−1/(d−2D). (7)

Thus when attention is confined to the amplitude ratio Rt, the required
quantities Af, t0 and a (or equivalently D) relate solely to the perturbing
operator. This operator is f2, 1 for both dilute A in regime 1 and the Potts
model, and any universal observable associated only to it should be com-
mon (20) for the points of contact between the models, as shown in Table I.
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The singular part of the free energy of the dilute AL model in regime 1
has been determined using the inversion relation (12) and exact pertur-
bative (21, 22) approaches. The leading term is: (12)

fs ’ ˛
p2 ln(p) L=2
p4(L+1)/3L L \ 3

so that for L even

a=
2(L−2)
3L

. (8)

Apart from when L=2, the coefficient (9) is:

Af=
4`3 sin(2p(L−1)/3L)

sin(p(L−2)/3L)
. (9)

The leading term of the correlation length (21, 22) is

t−1 4 4`3 p2(L+1)/3L. (10)

Strictly speaking this latter expression was determined for L odd, where it
applies both when p > 0 and p < 0, but there is good reason to believe that
it also applies to the high temperature regime for L even. The amplitude
ratio found in this paper is thus R+t , that is, it applies coming from above
the critical temperature.
Substituting the results (8)–(10) into (6), the general expression for this

particular universal amplitude ratio of the dilute AL models in regime 1 is:

R+t=5
2(L−2)(L+1)(L+4)

27`3 L3
sin(2p(L−1)/3L)
sin(p(L−2)/3L)

6
1
2

. (11)

Though the discussion above focussed on thermal fields, this expression
represents a universal quantity for all L; for L odd the nome is magnetic-
field-like.
Since L, like q, labels the number of states in the model, it would seem

it should always be an integer at least equal to 2. However, it has long been
realized that q can be treated as a continuous variable, when the Potts
model is formulated in terms of the random cluster model. (23) In particular,
by taking the limit qQ 1 results for percolation can be obtained. In a similar
way we will take LQ 1 in the dilute A model, as foreshadowed in Table I;
in the expression for R+t (11) there is no impediment to letting L run through
all natural numbers. Alternatively one can think of the crossing parameter l
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given in (1) varying quasi-continuously from p/8 to p/4. Technical details
to do with treating L in this way will be mentioned as necessary, as the four
values relevant to the Potts model are now considered.

3. THE UNIVERSAL AMPLITUDE RATIO

3.1. Potts Model with q=3, 4

It is now straight-forward to determine the amplitude ratio between
the specific heat, or singular part of the free energy, and the correlation
length for the q=3 state Potts model. Setting L=4 in (11):

R+t=5
5

27`3
6
1
2

. (12)

To determine the corresponding amplitude ratio for the q=4 state
Potts model, the limit LQ. is taken in (11). The result obtained is

R+t=5
2

27`3
6
1
2

. (13)

3.2. The Ising Model in Zero Magnetic Field, or q=2

It is hardly necessary to obtain an expression for R+t for the 2-state
Potts model via the dilute A model, since the result is exactly known from
the equivalence of this case to the (thermal) Ising model. The results
obtained by field theoretic approaches (2, 3) have already been shown to
agree with the lattice Ising model values. (5) In the interests of completeness,
then, let us confirm that the known value

R+t=
1

`2p

for the Ising model in zero magnetic field is recovered from the dilute A2
model in regime 1.
The expression (9) for the coefficient Af of the dilute AL model does

not apply when L=2; in this case correct treatment of the expression for
the partition function in refs. 12 or 21 gives

fs 4
12
p
p2 ln(p).
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Modifying the definition of the amplitude C 4 A ln(p) as is appropriate for
the logarithmic divergence, one obtains as expected

R+t=[2Af]
1
2 t+0=

1

4`3
524
p
6
1
2

=
1

`2p
.

However, the general dilute AL expression (11) for R
+
t is well-behaved

at L=2. Taking the limit LQ 2 gives, correctly,

R+t=5
2(L+1)(L+4)

9p`3 L2
cos(p(L−4)/6L)6

1
2

L=2
=
1

`2p
. (14)

Incidentally, for this Ising model case, which is related to the minimal
unitary conformal field theory M(3, 4), the scaling field f2, 1=f1, 3, which
can be seen from the identity for conformal weights

D (4)j, k=D
(4)
3−j, 4−k.

The (r−1)-state models of Andrews, Baxter and Forrester (10) are known (24)

to realise the f1, 3 perturbation of the minimal unitary series M(r−1, r)
and for r=4 should also give the 2-state Potts amplitude ratio under
consideration.
The free energy and correlation length of the ABF models, obtained (10)

from the 8-vertex model results, (25) are:

fs 4 −4 cot(p2/2l) yp/2l (15)

t−1 4 4yp/4l. (16)

However, the crossing parameter is l=p/r for the ABF models, and
for r even the free energy (15) should properly be modified with a loga-
rithmic factor, and the coefficient re-calculated. Instead, simply construct-
ing the amplitude ratio (6) of the coefficients in (15) and (16) and taking
rQ 4 by the approach used to obtain (14) for the dilute A model:

R+t=lim
rQ 4

5(r−4)(r−2) r
32

cos(pr/2)
sin(pr/2)
6
1
2

=
1
2
lim
rQ 4

5 (r−4)
sin(pr2 −2p)
6
1
2

=
1

`2p
.

3.3. Percolation, or q Q 1

The percolation result, though previously presented, (9) is reiterated
here for completeness. A review of the relationship between the q-state
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Potts model and percolation from the point of view of universal amplitude
ratios is given in ref. 3. The appropriate object of interest for percolation is
the ratio

R̃+t=lim
qQ 1

R+t
(q−1)1/2

.

To obtain R̃+t from the dilute A model, we put t=L+1 in the expres-
sion (3) for q, and then apply trigonometric identities to (q−1):

q−1=4 sin 1p(2L+1)
3(L+2)
2 sin 1p(L−1)

3(L+2)
2 .

Although there is a factor in the numerator of (11) which becomes zero at
L=1, we see that its ratio with (q−1) will be finite in the limit LQ 1, so
that

R̃+t=5
(L−2)(L+1)(L+4)(L+2)

27`3 L4 sin (p(2L+1)3(L+2) ) sin (
p(L−2)
3L )
6
1
2

L=1
=5 40
27`3
6
1
2

. (17)

4. DISCUSSION

In 1984 Kaufman and Andelman (26) presented an argument that the
specific heat amplitude ratio (above and below Tc) is A+/A−=1 for the
q-state Potts model (q [ 4). The free energy expression (9) applies for both
signs of p, so that this value of the universal amplitude ratio for the specific
heat holds for the dilute A model for all L, including the special cases
applicable to the Potts model.
Moreover, an expression was proposed in ref. 26 for the q-dependence

of the amplitude of the singular part of the free energy of the Potts model
for q [ 4, which accounted for its known divergences and zeroes and which
we will denote AKA. Substituting t=L+1 in (3) and this then into AKA it
can be shown on rearranging and comparison with (9) that

AKA=
b(q)
6

Af.

Here b(q) is a positive, slowly-varying function allowed for in ref. 26 so
thatAKA andAf must have common zeroes and divergences.We have already
observed, in constructing the amplitude ratio, that Af is divergent at q=2
and zero at q=1.
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It was remarked below expression (11) that it represented a universal
quantity for the dilute AL model for all L. It is related in a straight-forward
manner to the universal quantity considered in quantum field theory em−2,
where e is the bulk vacuum energy and the mass m of the field theory is the
inverse of the correlation length t in the scaling limit of the lattice model.
The quantity (see (9) and (10))

−fst2=
sin(2p(L−1)/3L)

4`3 sin(p(L−2)/3L)
(18)

agrees exactly (when the various notations are translated) with em−2 calcu-
lated for the f2, 1 perturbed theory by the thermodynamic Bethe ansatz (27)

and two-kink form factor approach (3) based on the S-matrix of Chim and
Zamolodchikov. (28)

Thus the algebraic expressions for R+t for the Potts model calculated
in this paper from the dilute A model agree precisely with those obtained
implicitly by Delfino and Cardy. (3) The numerical values given in Tables III
and V of ref. 3 (for comparison with previous numerical results for the
lattice Potts model) use the ‘‘second moment’’ correlation length, which
differs by a few percent from the ‘‘true’’ correlation length used here. This
can be seen in Table II where the second moment values (3) for Rt are
reproduced together with evaluations of the exact expressions (12), (13),
(14) and (17).
The authors of ref. 3 have further obtained numerical values for other

universal amplitude ratios for the Potts models which do not appear to be
accessible from solvable lattice models. Their various results are new for
q=3, 4 and improve results for percolation (qQ 1) from Monte-Carlo or
series enumeration techniques for the lattice Potts model itself. The good

Table II. The Potts Model Universal Amplitude Ratio R +
t , Determined from Quantum

Field Theory in the Two-Kink Approximation to the Form-Factors, Using the Second

Moment Correlation Length (by Delfino and Cardy), and from Special Cases of the

Dilute A Model Using the True Correlation Length (this Paper)

Potts model Two-kink approx. Dilute A model

q=4 0.2052 21/23−7/4=0.20680...
q=3 0.3262 51/23−7/4=0.32698...
q=2 0.3989 2−1/2p−1/2=0.39894...
q=1 0.926 23/251/23−7/4=0.92484...
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accuracy of the field theoretic approach was previously discussed in the
context of self avoiding walks. (29) Nevertheless, it is hoped that this cal-
culation in the solvable model context, though limited to one of the ampli-
tudes, is of interest to field theorists and statistical mechanists alike.
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